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Based on our earlier research [1,2], we
are convinced that the best way to approach
problem-solving tasks is not ough an
smgle method of reasoning, but by a method
that will allow several reasocning methods
to be blended together. The thrust of this
effort is to develop a s¥nerglstlc approach
to reaso that will allow a system to
rely on multiple reasoning meth olo%ies ,
thus benefiting from the strengths of each
of the reasoning methods, while minimizing
their respective weaknesses. This paper
discusses the steps we have taken towards
developing such a system, which are: 1)
the categorization of reasoning methods,
(2) the selection of reasoning approaches
to blend, (3) design of a framework to
blend the systems, and (4) proposed tasks
to investigate the result.

Human Reasoning L .

Research in Artificial Intelligence
(AI) is sometimes itioned into two |
approaches: a psychological approach which
enploys AT programs as useful tools for
studying the mind, and an engineering
approach which uses AI programs to solve
ggoblems, regardless of their similarities

human reasoning. While this effort is
concerned with the latter approach, it is
useful to examine the reasoning me{'_hods
used humans to guide us in modeling a
reason approach for machines.

When humans reason they rely on many
different reasoning ques, including:
?l. relying on memory of past cases when

ving problems which are similar to these

set of facts or suppositions." When
confined to this definition, few people
will dlsagle.?e that not only is it possible
for s to reason, but that many
already possess this capability.

With this in mind, we can see that each
of these reasoning methods have been
automated to some degree as (1) case-based
reasoning, (2) rule- reasoning, (3)
conventional reasoning, i4) nodel-based
reasoning, (5) analogical reasoning, and
(6) automated reasoning r ively.
While it is doubtful that we will ever be
able to automate the human reasoning
process, a good facsimile might come from
developm? a system that is able to combine
some or all of these reasoning techniques.
Before we discuss how that might be done,
it would be useful to develop a scheme to
categorize the different methods of
reasoning.

Several schemes are possible for
classifying reasoning methodologies. Past
approaches have included classification
based on the degree of precision (e.q.,
sound versus fuzzy reasoning) or degree of
generality (general purpose versus ial

g]lx.'pose reasonlng?l. The approach en in
is paper is a classification based on
what we call the "depth" of reasoning.

Shallow Versus Reasoni

Reasoning methods can be categorized as
"shallow" or "deep," depending on the type
of knowledge used in the system. An
agprogch taken by Harmon (Figure 1) is to
classify knowledge into three levels: (1)
heuristic or shallow knowledge, (2) domain

(1
f=le)
past cases. .
(2) using heuristics, or rules of thumb,
when confronted with a familiar situation.
(3) following a procedure to solve a
problem.
(4) developing a mental model of the
problem, or referring to a schematic to
diagnose problems in a complex stem.
(5) comparing an unfamiliar problem to a
gist problem (and solution) from a

ifferent domain. .
(62__husmg a formal logical method to prove
a theorem is true.

The methods outlined above are by no |
means an exhaustive list of human reasoning
methods. They do, however, represent a

le of methods that humans use. We
might wish to ask if a computer could
reason in a similar method. )

First, we must address the question of
whether a machine is capable of reasoning.
While entire books have been written on
related subjects [3,4,5], we will sidestep
the issue defining reasoning as "the
drawing of inferences or conclusions from a

knowledge (includes procedural-models)—and—————

(3) deep or theoretical knowledge [6].

Facts Shallow inowledge

Heuristics

Procedural Models
and (Explicit)
Domain Models

Abstract
Theories, laws,

: Deep Knowledge
and Principles

Figure 1. Three Levels of Knowledge [6].

To illustrate this knowledge
classification scheme, Harmon considers how
a non-technical son would react if their
television set did not work. First, he
might check to see if it was plugged 1in.
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If so, he might shake the cord and switch
all of the knobs on and off several times.
If all of this failed, the person would
decide he needed to take the TV to the shop
- or_purchase another one. This person has
only Level 1 knowledge of television sets.
It consists of a few heuristics that he
E?plles to televisions, toasters, and other
ectrical devices.

If the person takes the TV to a repair
cﬁ expects the repair son to have
mu more ]mowledge about televisions. The

person has Level 2 knowledge of

VlSlon sets; she probably does not have
an advanced degree in electronics or
understand the physics of television, but
she has domain or procedural knowledge of
televisions and TV repair. The domain
model includes many heuristics about how a
malfunction in one component might induce
symptoms elsewhere; the procedural model
grov:.des her with a step-by-step approach

o troubleshooting the TV. The repair

son can rely on both models to guide her
in the systematic diagnosis of the TV set,
antg %n selecting an appropriate repair
strategy.

If you wanted to design a new
telev1s:Lor1, you could probaglyfflnd someone

of a
umver who understands how televisions
worked. 'I“nls person has Level 3 knowledge
of television sets., He probably can't £ix
your television set, but he has the
underlying or deep knowledge of physics and
electronics that would enable him to create
a device that would function as a V.

We can extend this knowledge
classification scheme to reasoning systems.
As might be expected, traditional expert
systems (i.e, rule-based system) are
associated with shallow knowledge; they
rely on heuristic knowledge to solve a

roblem. Appropriately, we will refer to
ese systems as shallow reasoni systens.
Conventional systems, which normally encode
ghocedural knowledge, will be considered as
e midpoint between shallow and deep

The domain model is considered explicit
if a distinction is made between the
different sources of knowledge.
of knowledge and the role that each glays
in the problem-solving process is ma
clear. As an example, a system that models
the nents of an electronic
component and describes the relationship
between the components is an le of a
system employing an licit domain model,
and t‘gﬁuld be considered a deep reasoning
sys

While there is a tendency to attach a
bad connotation to the term shallow, this
is not justified with reasoning sys{:ems
(consider that MYCIN, a very successful
expert system used to diagnose meningitis
infections, contained only shallow
knowledge). Each form of reasoni has
str and weaknesses. The application
should dictate which form of reasoning is

Appllcatlons that require the system to
capture experiential knowledge are well
suited for shallow reasoning systems. This
type of knowledge is easily encoded into
empirical assoc1atlons Consider
develo eg system to capture the
knowledge of a retiring technician. The
technician's knowledge has been gathered
over the years from many different sources
and is best represented as an implicit
model.

However, the lack of licit
representation of more £ tal
knowledge can cause some serious problems.
These problems include: (1) rapid
degradation outside the narrow domain of
expertise of an expert system, possnoly
leading to in lete or incorrect
conclusions; and (2) the inability to
transfer knowledge to other tasks. This
inability stems from the fact that
heuristics are usually task specific; rules
written for the diagnosis of a component
will not normally be useful in an expert
system developed to design the component,
even though the underlying mechanism and

reasoning systems
systems (i.e,

Automated reasoning
theorem provers) are
associated with deep knowledge, and will be
called deep reasoning systems.

When extendi this classification
scheme to reasoning systems in general a
problem arises; theories can be encoded in
rules, and heuristics can be represented as
nodels. To account for thls, we will
modify the definition slightly.

To classify a reasoning system as
shallow or deep, we will consider whether
the system uses an implicit or explicit
model of the domain when reasoning. The
domain model is considered implicit if
there is no distinction between different
types of knowledge. Rule-based systems are
an example; they use heuristic knowledge
arising from man eg different sources (e.g.,
empirical knowledge, structural knowledge,
causal knowledge) and will often combine
different t of knowledge into a single
rule without distinction. A system usmg
an J'.mglicit domain model will considered

shallow reasoning system.

gals/]smal principles are the same for both
ks [7].
D:LaEyn]osm of man-made devices is a good
appllcatlon area for a deep reasoning
system. 1all if the device is’a
comglex sta e art nent with
ittle or no expertlse available. The
licit model of the deep reasoning system
allows the system to respond to situations
that could not have been predicted. But
development of the llClt domain model
requires the fundamental principles of the
domain to be well understood. This makes
deep reasoning inappropriate for areas
which are not well understood. In
medicine, for example, most of the
knowledge used for diagnosing and treating
diseases is irical, not based on a model
of the relevan blologlcal and chemical
mechanisms.

While reasoning methodologies do not
normally rely purely on shallow or dee]
reasoning techniques, we propose that they
can be broadly categorized as one or the
other. Returning to the three levels of



knowledge of Figure 1, we claim the
reasoning methodologies can be placed in
correspondence with the levels of knowledge
as shown in Figure 2. In this paper we
will discuss the three shallow reasoning
methodologies (case-based,-rule-based, and
conventional) and one of the deep reasoning
methodologies (model-based).

Knowleddge 4\ Reasoning System
Facts Shallow Case-Based
Heuristics Rule-Based
Procedural Models Conventional
Explicit)

lgomain Models Model~-Based
Abstract Theories, Analogical
laws, and Deep
Principles \V

Automated

Figure 2. The Depth of Selected Reasoning
Systens.

Case-Based Reasoning

The mounting evidence that human
experts rely heavily on memory of past
cases when solving problems has led to an
increase in the research of case- based
reasoning (CBR) [8]. In CBR, past cases |
are used to solve a new probiem case. This
can increase both the quality and the
efficiency of the reasoning deriving
shortcuts and anticipating problems in new
situations based on past experience with
similar cases.

There are two main t of CBR:
classification and problem-solving.
Classification CBR es that a new
situation should or should not be treated
like a past one based on similarities or
differences with the past case. Problem-

————solving CBR formulates a solution suitedto—exists; not-an-

the new case by modifying or adapting past
solutions. Classification CBR is usually
used for strategic planning or legal
reasoning while problem solv. CER is
typically used for design or diagnosis.
Proponents of CBR claim several
advantages. First, the shortcuts in |
reasoning and the capability of av01dl_gg
past errors enhance performance. Seco
no causal model or deep knowledge of the
structure is necessary, although their
existence will improve performance. A
third advantage is the scalability of CBR.
while there is a bottleneck in choosing the
base cases to reason with, researchers have
managed this problem by indexing the cases.
Researchers believe that indexing will
allow them to scale CER to the point
where they can tackle real problems in real
time. Finally, knowledge acquisition in
case-based reasoning is much easier than
for other reasoning methods. This is
because much of the knowledge required for
CBR is in the form of cases. Furthermore,

1

many domains have existmg case bases
(eégéé medicine, law) that could be used as
a .

Primary concerns with CBR are: (1)
organizing cases in memory, (2) selecting
the relevant cases, and (3) modifying
existing cases to fit new problems. All of
these areas are current topics of research.

Case-based reasoning is suitable for
domains involving classification (medical,
legal, planning) and problem solving
(design, mathematics, diagnosis). CBER is
best Suited to domains in which man
training cases are available, and where it
is difficult to specﬁg apgroprlate
behavior using abstract rules.

Rule-Based Reasoning

Rules are the most commonly used
knowledge representation technique in
artificial intelligence. In a rule-based
expert system, the domain knowledge is
represen as sets of rules that are
checked against a collection of facts or
knowledge about the current situation. The
rules are expressed as IF-THEN statements.
When the If portion of the rule (the
premise) is satisfied by the facts, the
action specified by the THEN portion (the
conclusion) is performed. This action may
result in the addition of new facts,
continuing the cycle until the goal is

achieved.

The str of rule-based systems lies
in the simplicity of their construction and
maintenance. Rules can be easily
constructed because tend to express
most of their problem-solving techniques in
terms of situation-action rules which can
be readily coded. Maintenance of the
system is” somewhat simplified because each
rule approximates an inde ent chunk of
knowledge, so that existing knowledge can
be refined and new knowledge can be added
in a modular fashion.

The weakness of rule-based system is
their lack of robustness. This arises from
the fact that only an implicit model

licit-eone—The
information contained in the model is a
collection of empirical associations drawn

from an expert. It is impossible for the
system to respond to a situation unforeseen
by the _(or not coded by the

knowledge engineer).

Rule-based, systems have been successful
in a wide variety of applications including
diagnosis, configuration, and control. The
classic example of a rule-based system is
MYCIN, an ,System designed to solve
the. g\gﬁl@n of diagnosing r i
treatment for meningitis and bacteremia.
While tools exist capable of unambiguously

diagnosing meningitis, these tools require
on the order of 48 hours to return a
diagnosis. Unfortunately, treatment for

neningitis patients must begin immediately.
The goal of MYCIN was to emulate the
doctor's expertise of formégg a diagnosis
that covers the actual infecting organisms
based on initial symptoms and test results

[2].



5-4

Conventional Reasoning

Oontrarg to ar belief, AI
advocates do not pr that all problems
shouldtlpe sclleed with AT to%%(s)ds ‘11
Conventional programming e \TAR
suffice in n\anYOglfxstances. Table 1 lists
the differences between conventional
systems and AT systems.

Table 1. Comparison of Conventional and AT
Systems [9].
Conventional AT System

Representation and Representation and

use of data use of knowledge
Algorithmic Heuristic
Repetitive Process Inferential process
Effective Effective
manipulation of manlgulatlon of
large data bases knowledge bases

Man%/ proiole.ms are best solved by L
conventional programming [9]. For exanple,
problemns whicg have tractab].e mathematical
solutions such as solving differential
equations with numerical analysis
techniques are not appropriate for AT,
while problems requiring algebraic
sj.mglification lend themselves quite
readily to symbolic reasoning. "Problems
that can be solved with algorithms (formal
procedures that antee the correct
solution every time) are better left to
conventional systems. For le, it is
more cost effective to sort lists with a
conventional system than with an AT

program.

Model-Baged Reasoning

The first of the deep reasoning systems
to be discussed is model-based reasoning.
Model-based reasoning uses an explicit
model of a system to describe the

lies in their fundamental knowledge of the
domain. This allows the system to reason
about situations previously unencountered,
and for which the system has not been
explicitly programmed. The type of
knowledge representation also allows the
knowledge to be transferred to other tasks;
that is, a model-based system originally
devel for diagnostics would be of
significant value when developing a design
expert system for the same domain whereas
knowledge from a diagnostic rule-based
system 1s of questionable value.

The weaknesses of a model-based system
become apparent only when it is a pure
model-based system; that is, when no
heuristics are used. Dia tic searches
through components of sys based on the
principle of locality make sense only if
all components are equally fallible and
equally accessible. Otherwise, rules are
essential. In fact, many cases can be
shown where model-based reasoning requires
more time than rule-based systenms. For
this reason, most model-based systems will
include at least a few rules to improve
performance.

In a ent section we
blending these four reasoning methods to
produce a synergistic effect. We claim a
modified blackboard is a suitable framework
for ing the individual reasoning
methodologies. The traditional blackboard
architecture is discussed next to provide a
foundation for these arguments.

Blackboards

The blackboard architecture was
developed for a speech understanding system
developed in the Seventies known as
Heresay-II {11]. Since its development,
the blackboard model has been proven a
robust model of problem solving on
applications from ocean surveillance (HASP)
to air traffic monitoring (TRICERO).

The traditional blackboard model
contains three major components as shown in
Figure 3 [12]:

e for

comporients of a physical system, the
connections between the components, and the
behavior of each of the components [10].
The system is able to reason about pIéKsical
laws which apply to the system, and the
effect the laws may have on the systenm.
This form of reasoning allows for a more
robust response to a previously
unencountered set of circumstances.
Model-based systems commonly use causal
reasoning, reaso from first principles,
and reasoning from the principle of
locality in solving a problem. Causal
reasoning relies on knowledge concerning
how the vior (or misbehavior) of one
component affects the behavior of another
nent. Reasoni from first principles
relies on the laws of physics or .
mathematics to predict or explain behavior
of a system. The principle of locality
considers how components are connected
émechanicall , electrically, physically) in
etermini ow behavior of one component
can be influenced by another component.
The strength of model-based systens

Knowledge

/ Source

= Knowledge
Source

\ Knowledge

Source

Blackboard

Figure 3. The Traditional Blackboard
Architecture [12].

(1) The knowledge sources - The knowledge
needed to solve the problem is partitioned
into knowledge sources, which are kept
separate and inde) ent.

(2) The bla data structure - The
problem solving state data are kept in a
global data store, the blackboard.



Knowledge sources Eroduce changes to the
blackboard, which lead incrementally to a
solution to the problem. Commnication and
interaction take place solely through the
blackboard.
(3) Control- The knowledge sources respond
ogportunlstlcally to changes in the
blackboard. The structure of the control
is left open. It can be in the knowledge
sources, on the blackboard, or a separa
Al?:ixough impl tati
implementations vary,
knowledge ‘source activity is usually event
driven.” Each change to the blackboard
constitutes an event that in the gﬁesence
of ific other information on the
bla can trigger one or more
knowledge sources. The control mechanism
selects a single knowledge source to |
execute its action on each problem-solving
cycle. The control mechanism may use a_
variety of criteria such as the credibility
of the knowledge source's triggering
information, the reliability of the
knowledge source, or the importance of the
solution it would generate. When a,
knowledge source is triggered, it will
ically produce new blackboard events.
ese events may in turn trigger other

knowledge sources [11].
Bl?a%?(board systEams] construct solutions

incrementally. “On each problem-solving
cycle a single knowledge source executes,
generating or modifying a small number of
solution elements. Some elements are
assenbled into growing partial solutions;
others may be oned. Ideally, elements
are eventually assembled into a complete
solution.

As an illustration of how a blackboard
uses cooperating knowledge sources, we can
e its ation to an aircraft
accident investigation board. Whenever an

Air Force aircraft crashes, an )
investigation is performed to determine the
facts surrounding the case. After the
investigation is complete, a board is held.
The board consists of the board chairman

————and-specialists who may be-able to-help———

determine the cause of the accident (e.g.,
pilot, navigator, aircraft mechanic). The
chairman lists the facts on a bla in
the front of the room. He then asks for
comrents from the t%rou;p , .

If someone in the room has information
to add, theiz raise their hand. The |
chairman calls on one of the people with
their hand raised, and that person adds new
information (facts or hunches) to the
board, then returns to their seat. Based
on this new information more hands may go
up, and some of the hands that were may
go down. The chairperson again sel
someone. This person may add new facts or
hunches, or may refute earlier hunches by
other members of the board. The session
continues until the cause of the accident
is determined, or until the group can
contribute no new information.

The parallel to a blackboard is
obvicus. The chairman is the control
associated with the blackboard. The panel
members are the knowledge sources, each
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with a particular domain. The blackboard
in the front of the room is the blackboard
structure of the architecture.

The Synergistic Reasoning A%roach

Each of the reasoning methods
previously discussed has associated
str: 5 and weaknesses. Merging the
meth in the proper fashion d create
a system that would benefit from the
strengths of each of the methodologies
while minimizing their weaknesses. It is
postulated that a such a blend would result
in a istic effect, allowing a system
to solve problems that could not be solved
by any of the individual reasoning
meth c%loqles. tic blend

Such a synergistic is possible
making a fundamental modification to theby
blackboard problem-solving approach. The
essence of the modification is to partition
the system based on reasoning methodologies
rather than knowledge modules. Indeed, it
may be more appropriate to partition the

stem on methods of reasoning.

Consider a son taking a (closed book
test. All ledge to'be used during the
test is self contalned. There is no reason
to believe that the knowledge is

itioned into different modules within

e person. However, the person may use

several different methods of reasoning
about the problem. These methods of
reasoru’ncr:{ can be modeled as "reasoning

modules.

This approach will produce a
synergistic effect allowing the modules
to focus their individual strengths on a

roblem. By cooperating through the

lackboard and post:.ng g:rtial solutions, a
%x;oblem that could no solved by any of

e systems individually could be solved by
the system mgsd ? wholti.1 Thgt is, or}el
reasoning ule could post a partia
solution not obtainable any of the other
modules, and while it might not be able to
generate the desired solution, one of the
remaining modules, which was also unable to

generatethe desired solution from the
original problem, nmight be able to do so

st isfgggtrgsug@ecﬁed f . th

istic e is rom the
igri]?i‘gy of one reasoning system to refute
conclusions of another reasoning module. A
diagram of the synergistic reasoning system
is shown in Figure 4.

Satellite Autonomy

Satellite Autonomy is a suitable
application for the proof of concept of the
SRS. . Satellite control is a complicated,
tedious, and labor intensive process.
According to a 1989 GAO study, over 4,000
ggverrm\ent and contract staff are required

operate the Air Force Satellite Control
Network consisting of fixed ground-based
tra stations, central control
facilities, and commnication links
(13,14]. This network currently controls
the operations of approximately 80 on-orbit
satellites. Predictions are t 135
satellites will be on-orbit b{ the year
2000, and 150 will be on=-orbit by 2015.
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SYNERGISTC REASONING SYSTEM

BLACKBOARD (PROBLEM SPACE)

INPUT

CONTROL

OUTPU

! P4 ]

CAE RULE ::‘0::
B | [S88e] [ | | e
Figure 4, The Synergistic

Reasoning System

However, the number of controllers
supporting the network is likely to remain
constant while the level of expertise
decreases due to retirements [15].

As early as 1985, AT technology was
identified as capable of supporting high
levels of satellite autonomy. A Jet
Propulsion Laboratory study identified
specific applications that could benefit
from one or more AI techniques [16]. As a
method of meeting the goals of satellite
autonomy, it is possible to develg
autonomous subsystems for the satellite.
Autonomy for each subsystem would be
valuable in its own right, and could serve
as components of a fully autonomous
satellite. stems on-board that were
identified as well-suited for autonomous
operations include: (1) guidance,
navigation, and control, gz power systems,
(3) ermal control, and (4) payload
management.

e same 1985 report defined eleven
levels of satellite autonomy which are
shown in ix A, Current satellites

operate-at-about-Level 3. The goal-of-an——conventional program performs-routine —

application associated with the synergistic
reasoning system would be to provide a
satellite with the salient characteristics
associated with Level 5 operation
specifically, autonomous fault tolerance
for operations in the TEi'esence of faults
specified a priori. is capability will
employ spare system resources, if
available, ogavs.'éél ma)ummgl%ismn it
performance upon avai e capabili
and/or available expendables withougagroung
intervention.

Satellite autonomy is well suited as a
domain for testing the Synergistic
Reasoning System. Current control of
satellites is ormed through the sole
use of conventional programs and fregquent
human intervention. A sii;nificant increase
in effectiveness in satellite operations is

from implementation of a
synergistic reasoning system since
performance improvements are documented for
rule-based and model-based systems on
similar domains. While there is less

experience with case-based systems, the
unpredictable behavior of spacecraft often
leads to problems which are currently
solved by relying on past cases.

Figure 5 is a diagram of a Synergistic
Reasomntg System for satellite autononmy.
Note that human intervention has been
modeled as a separate reasoning module.
'Ihsul%sf;l%ems Th iﬁ‘mm% tens

= . e ivi S

are shown from left to right accordgglg to
the.degt;h.of their reasoning methodology.
An implicit control line runs from the
control module to each of the components of
the system. A proof of concept in this
domain would be limited to a single
subsystem, such as the fault diagnosis and
recovery of the autonomous navigation
systen,

[T SYNERGTSTIC REASONING SYSTEM

BLACKBOARD (PROBLEM SPACE)
PROPULSION

INPUT

POWER SYSTEM

ATTITUDE CONTROL ~ MISSION PAYLOAD

CONTROL [~

THERMAL CONTROL NAVIGATION

COMMUNICATIONS SCHEDULING

OUTPU

FAULT DIAGNOSIS STATUS MONITORING

] P ! i

faseo taskn conamaral | oeze o
Figure 5, SRS for Satellite
Autonomy
Satellite Auto: le tion

nomy Sample Operation
As an example of how the reasoning
system might produce a synergistic effect
from the proposed architecture consider the
following scenario:

I. During normal operation, the
operations.

II. The signal from the ground station
falls below a predeterminéd level.

IIT. A messagg is posted to the blackboard
by_t‘tg: conventional system that a problem
exists.

"“Signal weak from ground station’

IV. The executive module determines that
the problem is diagnostic in nature and
does not require immediate human
intervention. The rule-base reasoner is
activated.

V. The rule-base tries a series of data
driven quick fixes.

IF  <8ignal Weak>
THEN Increase Gain.



IF <Gain Increased> and
<8ignal Weak>
THEN Calibrate Pointing.

IF <Gain Increased- and
<Pointing Calibrated> and
<8ignal Wealk>

THEN Check Components <Sensor 1>.

VI. The executive module acknowledges the
inability of the rule-base module to
correct the problem. The model-based
reasoner is activated.

VII. A nmodel of the Sensor system is
constructed:

Conponentl: Antenna

Component2: Amplifier
Component3: Phase Shiftexr
Componentd4: Power Supply
Component5: Ground System Output

VIII. The suspected nents are ted
on the blackboard. At this time thepos
rule-based module is used again to
determine the order of search. The
rationale is that the blackboard ma
contain additional information on the
current situation which will modify the
correci':tivg act%gxgslof the system. For
exampe,lfnm:Lesubszs were
experi%ing diffgghulty, ere wciuld be
reason suspect the power supply. In
this instance, the rule-based reasoner adds
no additional information and the
model-based reasoner is reactivated.

IX. The model-based reasoner then examines
each of the components and determines that
all comggnents are sourd. The results are
posted the Blackboard.

‘ségnal Weak From Ground Station.

e-base Quick Fix Tactics Unsuccessful.
nents of Communication System

Verified Sound.

X.— The executive module activates the
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XII. Components of the model are dia
and it is determined that the rotation

of one of the four reaction wheels is
low. The faulty rotation wheel is turned
off and the blackboard is sent the message:

Fault detected in momentum wheel #2.

XIII. The Rule-based system would use data
driven tactics in an at t to solve the
problem, such as recycling power to the
wheel. If these at are unsuccessful,
a nmessage stat that it will be

to develop new algorithms to work around
the fault would be sent to the mission
controller at the ground station (modeled
as "Human Intervention").

Future Improvements

Two_extensions to the Synergistic
Reasoning System are proposed: (1) the
addition of more reasoning modules and (2)
a feedback system to allow controlled
modification of the modules based on past
sessions. This extended system is shown in

Figure 6.
| - G SYSTEM

BLACKBOARD (PROBLEM SPACE)

INPUT

ONTROL

QUTPUT

(I [ { ] !

perrd et uoper AALOGOUS HITORATED
Wt | [ PR || [ ||
t I SYSTEM 'd I
Figure 6. The Extended Synergistic

Reasoning System.

case-based reasoner to determine if a
similar event has previously occurred. The
case-based system finds a match with a
previous event:

Problem:
Ground Station Reports Weak Signal.
Rule-base Quick Fix Tactics Unsuccessful.
Components of Commmication System
Verified Sound.

Repair:
Fault in Attitude Control System.

XI. Check Attitude Control System is
posted to the Blackboard. The model-based
system builds the following components:

Componentl: Attitude Control Electronics
Component2¢ Earth Sensor

Component3: Sun Sensor Assembly
Component4: Rate Gyro

Component5: Reaction Wheel

Componenté: Solar Array Switch

. The four reasoning methodologies used
in this research can cover most common
roblem instances. To be successful
owever, they require that either rules ’
gﬁst cases, algorithms, or models exist for
e problem domain. To ke successful in

domains for which such information is not
available more powerful reasoning
methodologies are required. Two such
reasoning methods are analogical reasoning
and automated reasoning. While it is not
expected that analogical and automated
reasoning systems would be used as often as
the other forms of reasoning, it is
conceivable that they could prove valuable.
For example, they could provide
considerable value in deep sggge missions
in which previously unencountered )
situations occur, and human intervention is
hampered by the amount of time required by
long distance commnications. i

The second extension is to modify the
traditional architecture to allow the
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controlled modification of one reasoning 7. Iwasaki, Yumi. The Handbook of

module based on results from one or more of Artificial Intellii[ence Volume IV, Edited
the other reasoning modules. This violates by Avron Barr et al. Addison-Wesley
one of the defining features of the Publishing Company, INC. Reading, Mass.

blackboard architecture which is that the 1989.
knowledge sources are totally independent

of each other, and cannot influence each 8. DARPA. '"Case-Based Reasoning from
other directly [11]. , DARPA: Machine Iearning Program

The controlled modification would be in Plan",Proceedings: Casé-Based Reasoning
the form of a feedback system that allow Workshop. Morgan Kauffman Publishers, San
the contents of a module to be modified Mateo Ca 1989.

based on the results of previous sessions
that involved other reason modules. For 9. Waterman, Donald, A Guide to Expert
le, the system would allow a solution Systems. Reading MA: Addison Wesley

resulting from use of the model-based Publishing Company, 1986.

system to be added as a rule to the . .
rule-based system. In addition, the 10. Davis, Randall, et al., "Diagnosis
results of any session (including Based on Description of Structure and ™

unsuccessful sessions which regquired human Function" Proceedings of the National
intervention) would be stored as a new case Conference on Artificial Intelligence, pp.

in the case-based reasoning system. 137-142, 1982,

This feedback system could also be used
to improve the ormance of the 11. Hayes-Roth, Barbara. "Blackboard
analogical reasoning system. When Systems," The Encyclopedia of Artificial
analogical reasoning is employed, the Intelligence. Edited by Shapiro. 1589.
result is positive mappings g ose -
attributes that are conf to correspond 12. Nii, Penny. The Handbook of
between source and target), negative Artificial Intelligence Volume IV. Edited
mappings (those attribites that are by Avron Barr et al. Addison-Wesley
confirmed to not corresgond between target Publishing Company, INC. Reading, Mass.
and source), and neutral mappings (those 1989,

attributes whose corr ndence has yet to

be confirmed). The £ ck system could 13. GAO Report to the Chairman,
postulate a theorem that a neutral Subcommittee on Defense, Committee on
attribute has a itive (or negative) Apg];opriations , House of Representatives,
mapping. It could then use the automated Military Space Operations -~ Shuttle and

reasoner to prove or disprove the theorem, Satellite Computer Systems Do Not Meet
leading to an increase in confidence in, or Performance Objectives. August 1988,

denial of, our analogy.
14. GAO Report to the Chairman
Subcommittee on Defense, Commit on
Apgr;oprlations, House of Representatives,
Military Space Operations - Operational
Problems Continue With the Satellite
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